The tail rotor is a smaller rotor mounted so that it rotates vertically or near-vertically at the end of the tail of a traditional single-rotor helicopter. The tail rotor's position and distance from the center of gravity allow it to develop thrust in the same direction as the main rotor's rotation, to counter the torque effect created by the main rotor. The tail rotor drive system consists of a shaft powered from the main transmission and a gearbox mounted at the end of the tail boom. And there's no separate engine to drive the tail rotor, it's driven by the main engine.
The most common reason for autorotation is an engine malfunction or failure, but autorotation can also be performed in the event of a complete tail rotor failure, or following loss of tail-rotor effectiveness, since there is virtually no torque produced in an autorotation. If altitude permits, autorotations may also be used to recover from vortex ring state. In all cases, a successful landing depends on the helicopter's height and velocity at the commencement of autorotation
At the instant of engine failure, the main rotor blades are producing lift and thrust from their angle of attack and velocity. By immediately lowering collective pitch, which must be done in case of an engine failure, the pilot reduces lift and drag and the helicopter begins an immediate descent, producing an upward flow of air through the rotor system. This upward flow of air through the rotor provides sufficient thrust to maintain rotor rotational speed throughout the descent. Since the tail rotor is driven by the main rotor transmission during autorotation, heading control is maintained as in normal flight.
0 comments:
Post a Comment